
Introduction to R

Ina Krapp
SAFE Research Datacenter∗

Last Update: November 20, 2023

This tutorial gives an introduction into linear regression with R. For complete beginners, it is
recommended to first go through the Introduction to R tutorial. This tutorial is intended to be
run as a QuartoMarkdown file in RStudio, which allows you to execute the code yourself. To
run it, download the QuartoMarkdown version here and open it in a recent version of RStudio.

Contents

1 Contact . 1

2 Prerequisite . 2

3 Load data . 2

4 Modifying data . 2

5 Running a regression . 2

6 A technical remark on lists . 4

7 Fixed effects . 5

8 Running a regression with factor variables . 6

1 Contact

If you encounter any difficulties or just want general information, do not hesitate to contact us.

SAFE Research Datacenter: datacenter@safe-frankfurt.de

More information about the SAFE Research Datacenter and further guides can be found here.

∗krapp@safe-frankfurt.de

1

https://datacenter.safefrankfurt.de/datacenter/documents/SAFE_webinars/05_Intro_R/safe_datacenter_Intro_R.pdf
https://datacenter.safefrankfurt.de/datacenter/documents/SAFE_webinars/06_Linear_Regression_R/Linear_Regression_R_tutorial.qmd
mailto:datacenter@safe-frankfurt.de
https://safe-frankfurt.de/data-center.html

2 Prerequisite

R can be downloaded here.
We’ll also use RStudio. RStudio is a user interface which makes working with R much more
convenient. You can get it here.

3 Load data

If you did not already do it when working through ’Introduction to R’, you’ll need to download
the data first.

1 library(readr)

We’ll use the package to load the data from here: https://github.com/allisonhorst/palmerpenguins/blob/main/inst/extdata/penguins.csv
Download it and put it into the same folder that you have currently open in RStudio.
Read it into R:

1 penguins <- read_csv("penguins.csv")

4 Modifying data

Often, when you’ve loaded the data, you will not be immediately able to work with it. More
often than not, it needs to be changed beforehand.
You can not simply write in a dataframe by clicking on it. This is because such changes would
not be reproducible. You can modify a dataframe in any way you want, but in R, it has to be
done using code.
This dataset contains no identifier yet. We’ll add one:

1 penguins$id <- 1:nrow(penguins)

We can also change individual values. For example, assume that we knew the penguin in row
48 (which currently has a NA value) was female. The gender is in the seventh column. You
indicate the position of a value in the dataframe by giving the row first and the column second.

1 penguins [48, 7] <- ’female ’

If we want our dataset to only include rows in which all values are known, we remove the NA’s
with this command:

1 penguins <- na.omit(penguins)

Remember that in R, it are always entire rows which get removed. It is impossible to only
remove individual values because a dataframe always needs to have one entry for each column
in every row. If an individual value is not known, you set it to be NA instead.
There are also options such as replacing NA’s with the mean value of their column, but these
are not always scientifically sound. Which strategy for missing data is appropriate depends on
the dataset and your research question.
Once we are confident the data is what it should be, we can start our regression.

5 Running a regression

We’ll use the fixest package to run regressions. Many packages in R can be used for this
purpose, and base R allows to run regressions, too. But the fixest package is very fast - for
large datasets, that’s important.

2

https://cran.uni-muenster.de/
https://posit.co/downloads/

1 library(fixest)

A regression in R is a function. It has a name and function arguments. Since we work with
linear regressions, we use the feols command (ols are ordinary least squares).
The first regression checks if penguins who weigh more have longer flippers:

1 feols(flipper_length_mm ~ body_mass_g, data = penguins)

They do, the estimate is positive and significant (with a very small p-value). The effect is not
very large, though. Also note that the results are themselves a data frame, with two rows and
five columns.
Regression results can be saved by assigning them to a name:

1 feols(flipper_length_mm ~ body_mass_g, data = penguins)

This ensures that you can always access them. You can call the table of results we saw above
with the summary function:

1 summary(flipper_regression)

It is good practice to calculate heteroskedasticity-robust standard errors. This is done with the
vcov-argument. You can do it in the regression function or in the summary function.

1 summary(flipper_regression , vcov = ’hetero ’)

As you can see, the estimate remains the same. But the standard error and the metrics
calculated based on it (the t-values and p-values) change.
In the next step, write your own regression. Is the bill length positively related to the bill
depth? Calculate heteroskedasticity-robust standard errors for this.

3

1 # Specifying vcov = ’hetero ’ in the regression or the summary is

possible

2 bill_regression <- feols(bill_length_mm ~ bill_depth_mm , data = penguins

, vcov = ’hetero ’)

3 summary(bill_regression , vcov = ’hetero ’)

Surprisingly, the relation is significantly negative. Penguins, it appears, either have a short,
but thick bill or a long, but thin one.

6 A technical remark on lists

A regression is stored in R as a list. A list is a special form of datatype. You can access elements
from this list, for example, the number of observations the regression was run with (”nobs”).
Important to know: If you extract an element from a list with single brackets, even if it only
contains a single value, it will be a smaller list. For example, if I extract the value ”nobs” with
single brackets, it gets extracted as a list.

1 bill_regression["nobs"]

2 class(bill_regression["nobs"])

> bill_regression["nobs"]

$nobs

[1] 334

> class(bill_regression["nobs"])

[1] "list"

To get the element itself, use double brackets:

4

1 bill_regression [["nobs"]]

2 class(bill_regression [["nobs"]])

> bill_regression[["nobs"]]

[1] 334

> class(bill_regression[["nobs"]])

[1] "integer"

7 Fixed effects

In many datasets, such regressions as the ones above are not a good approach. That is because
they are only valid when the data is a random sample of the underlying population. But what
is the population we are considering here?
The penguin data contains three species, covers three islands and was collected over 3 years.
The bills may not be formed the same for all three species. To test this, we use a fixed effect.

1 species_regression <- feols(bill_length_mm ~ bill_depth_mm | species ,

data = penguins)

Again, we need to think carefully about standard errors. If the data is clustered according to
specific variables (here: species), the standard errors have to be clustered as well.

1 summary(species_regression , vcov = ’cluster ’)

As we can see, the estimate is no longer negative.
How does it look like when we also want to control for the sex of the penguins?

1 species_regression <- feols(bill_length_mm ~ bill_depth_mm | species + sex ,

data = penguins)

2 summary(species_regression , vcov = ’cluster ’)

5

8 Running a regression with factor variables

This form of clustering is to control for a certain variable, like species. If, instead, we wanted
to know the effect such a variable has, we need to run the regression with a factor variable.
Transforming a variable into a factor is straightforward:

1 penguins$sex = as.factor(penguins$sex)

Note that the type changed: Previously, the type of sex you saw when klicking on ’penguins’
in the Environment Pane was ’chr’. Now, it is ’Factor w/ 2 levels’ ”female”, ”male”.
Levels are the different values a factor variable can take.

1 weight_regression <- feols(body_mass_g ~ sex , data = penguins)

2 summary(weight_regression , vcov = ’hetero ’)

The variable ’sexmale’ is created automatically when the regression has a factor or character
vector as input. The system creates a dummy, a variable ’sexmale’ that can take 0 or 1,
depending on if the penguin is male or not. It then estimates the effect of this dummy, compared
to a baseline (here, female penguins are the baseline).
Again, we want to control for species effects:

1 weight_regression <- feols(body_mass_g ~ sex | species + island +

species^island , data = penguins)

2 summary(weight_regression , vcov = ’cluster ’)

3

6

We see that although the effect is still significant at the 5%-level, the species fixed effects have
a certain influence as well.
In the next step, create your own factor variable. Answer the following question: Does the
body weight of the penguins change with the years?

1 penguins$year = as.factor(penguins$year)
2 year_regression <- feols(body_mass_g ~ year , data = penguins)

3 summary(year_regression , vcov = ’hetero ’)

4

No. The estimates are positive, but not significant (the p-value is very large). That is also
important to know: If the variables for 2008 or 2009 negatively impacted their weight, it may
mean that the colonies were endangered.

7

	Contact
	Prerequisite
	Load data
	Modifying data
	Running a regression
	A technical remark on lists
	Fixed effects
	Running a regression with factor variables

